Groundwater modelling

Christian Gmünder Simultec AG

Hochwasserschutz fürs Rheintal

Situation

Southern part

Northern part

Changes in the Rhine water level

Project

Effects of the project

- The bed of the Rhine will be raised
- The Rhine bed becomes more permeable
- The groundwater table will rise

Measures:

- Drainage located on both sides of the Rhine
- Under normal circumstances, the drainage pipes drain into some small brooks
- In the event of flooding, pumping stations are provided to pump the drained groundwater into the Rhine

lochwasserschutz fürs Rheint:

Example

Arrangement:

- Left: new drainage
- Right: existing drainage in Lustenau

Function:

 New drainage only works at groundwater levels > mean water level

400

Hochwasserschutz fürs Rheintal

300

400

500

600

700

Distanz [m]

2

800

900

Drainage Lustenau

1000

1100

Input from the local hydrogeologists

ORhesi Hochwasserschutz fürs Rheintal

Model concept

Dimensions

- The aquifer is 44 km long and 10 km wide
- The gravel thickness is 10 20 m
- Beneath the gravel are deposits with significantly lower permeability
- A separating intermediate layer is found at a small region only
- A 2D-model with a free groundwater table is appropriate

Time dependence

- The groundwater level fluctuates by several metres in many places
- The impact of the project must be forecast for all groundwater levels
- A flood passage is of particular interest
- The model must be transient

Numerical method

- The requirement for model discretization varies greatly from place to place
- The Finite-Element method is a good choice (FEFLOW)

Data available

Head mesurements

- 320 measuring points
- 600'000 daily values (2015-2020)

Rivers and drainage channels

- 10 permanent discharge measuring stations
- Some single measurements

Pumping rates

- Pumping rates at 172 wells
 Clima
- Rainfall at 19 climate stations
- Full climate data at 2 stations

Calibration method

Manual and automatic calibration in a loop

- The informations given by the hydrogeologists were rather detailed
- A zonal calibration was therefore choosen
- Before and after an automatic calibration step, a manual step was done
- The correlation matrix and the sensitivity of the parameters resulting from PEST was used to better choose the parameter zones and ranges
- Time period 2015-2017

Calibration measures

- Root mean square error
- Average deviation
- Median of deviation
- Visual check of the most important measuring points

Validation

Validation is crucial for a predictive model

- Time period 2018 2020
- Discharge of the drainage channels
- Pumping tests at nearly all drinking water wells
- Transport calculations:
 - electrical conductivity
 - oxygen-Isotopes
- Tracer tests
- Lysimeter measurements

Finite-element mesh

Extensions to FEFLOW

Flow path routine in a continuous flow field

- According to Cordes and Kinzelbach (water resources research 1992)
- Allows for calculating the water balance along the flow paths
- Statistics of flow times
- Origin probability

Patch for water balance

Extensions to FEFLOW (python)

Pipe hydraulics

- To drain the groundwater at high dscharge in the Rhine pipes up to 2.20 m diameter are nesessary. The water level in the pipes is therefore relevant
- The water level is calculated at every time step by analytical formulas along the pipe

Wetting of the river bed

• The cauchy boundary condition is switched on and off according to the water level in the Rhine river

Hochwasserschutz fürs Rheint

29.04.2025

Resulting model

Transmissivity

Leakage values

Predictions of the target state in 2099

Hochwasserschutz fürs Rheintal

Impacts at high Rhine discharge

Target state – actual state

Impacts at low Rhine discharge

Target state – actual state

Decolmation test

ORhesi

Hochwasserschutz fürs Rheintal

Motivation and goals

Importance

- In order to protect the densely populated Rhine valley from flooding, the Rhine channel will be widened
- 24 drinking water wells must be temporarily taken out of operation during the construction works
- Due to the expected higher bed permeability, drainage channels will be constructed on both sides of the Rhine

Questions arising

- How much will the riverbed permeability increase during construction?
- Will the quality of the infiltrating groundwater change?
- How long will it take to colmatise the riverbed again?
- How long will it take until groundwater quality is good enough again?

Test site evaluation

Site requirements

- Representative for existing drinking water catchments
- High permeable aquifer
- Heavily colmated Rhine bed
- Infiltration zone (all season)
- No risk for drinking water wells

Position of the groundwater table

ORhesi Hochwasserschutz fürs Rheintal

Experimental setup

Pumping well

 force the flow direction to slightly inwards

Monitoring wells

- along the riverbank
- perpendicular to the riverbank
- In two depth levels

Intervention wells

 prevent high groundwater levels

Excavation

- Area: 15 x 150 m
- Depth: 1 m

Test period

- No heavy rainfall before and after excavation
- Rhine discharge low and constant

Excavation and Freeze-Cores

Freeze-cores

Reaction of the groundwater table

Hochwasserschutz fürs Rheintal

Survey of the Rhine bed

Difference before (March) and after (April 21) the excavation

Rhesi

Hochwasserschutz fürs Rheintal

orange: lower violet: higher

Development after the excavation until May 18

Survey of the Rhine bed

Further development Mai – Nov. 21

Rhesi

Hochwasserschutz fürs Rheintal

orange: lower violett: higher

Difference between the original state and the survey of Nov.

Change in flow time from the Rhine

²²²Rn method:

- No ²²²Rn in the Rhine water
- Saturation hal-life time 3.8 d

Rhine flow rate and ²²²Rn activity at the test well

Tracer-tests with nobel gases

Hochwasserschutz fürs Rheintal

NIVERSITÉ DE

NEUCHÂTE

29.04.2025

Chemische Wasserqualität

Sauerstoff und elektrische Leitfähigkeit

P6

A

VB

P1 P2

P3 P4

Mikrobielle Wasserqualität

Gesamtzellzahl und Anteil LNA (Low DNA)

A

P9

Model interpretation - tomorrow

Thanks for your attention Questions?

