Use of Isotope data to quantify the interaction between the river Rhine and the groundwater at Oberriet, CH

Christian Gmünder¹, Simon Nusch¹, Stephanie Zimmermann²

¹Simultec AG, Zürich
²BAFU, Abteilung Hydrologie, Sektion Hydrogeologische Grundlagen, Ittigen
The interaction between river and groundwater and the flow velocity towards drinking water wells must be known.

The BAFU performs oxygen isotope (18O) measurements at the Balanggen well at Oberriet.

Can the 18O measurements be used to improve the results.

Numerical groundwater model of the Alpenrhein valley and simulations of the electric conductivity (EC) values at the wells.
Balanggen well
- 400 m from the River Rhine
- Groundwater flow is directed from the Rhine to the well
- A clear annual cycle of EC and 18O can be measured at the well and the river.

But
- Infiltration is strongly dependent on river discharge
- An undercurrent of the riverbed is suspected

→ Complex situation – can’t be treated by a simple time series analysis
Task Analysis

Needs
- Numerical model needed
- Model must be transient
→ Local model embedded in the existing regional model

Unknown Parameters
- Leakage through the riverbed
- Aquifer permeability
- Effective porosity
- EC: mineralisation speed

Discharge dependent Cauchy boundary

Model boundaries and boundary conditions
Candidate observations

EC
- Cheap measurements
- river and background GW concentration differ
- Adapts to background value
- Background values 600 µS/cm

18O
- Expensive measurements
- river and background GW concentration differ
- No change during gravel passage
- Background values -10.3 ‰ [4]

Electrical conductivity measurements

Oxygen isotope measurements
Methods

Boundary conditions
- All inflows to the model get a zero concentration
- Inflows from the river Rhine get a concentration calculated as the difference between background and measured concentration
- Mineralization of EC is considered by an exponential degradation of concentration

Transport model
- Dispersion considered
- Needs a fine element discretisation to avoid numerical dispersion

Mass balance along flow paths
- Flow paths in continuous velocity field \[^{1,3}\]
- Faster and more stable
- Statements about flow times possible

Transport model screenshot
Calibration by groundwater level measurements

- Aquifer permeability can be calibrated
- Level fluctuations are not sensitive to leakage values at project site
- Effective porosity can’t be calibrated (not fillable/drainable porosity)
Calibration by 18O signal

- Effective porosity can be calibrated by modelling the time lag between signal in the river and signal in the well.
- Leakage value can be calibrated by simulating the absolute values.
Results: Rhine Water Fraction

- Rhine River fraction depends strongly on Rhine discharge
- Fraction values between 0% and 50%
Results: Flow Times from Rhine to Well

- Flow times from Rhine to well depend on Rhine discharge
- Values along different flow paths vary between 70 and 360 days
Added value: EC mineralization speed

- Mineralization speed can be estimated by a sensitivity analysis
- Half time values are in the range of 100 to 200 days
Conclusions

- Knowledge on the interaction between river Rhine and groundwater was gained by building up a transient groundwater model.
- The use of oxygen isotopes helped us to calibrate the leakage value of the river.
- Measuring frequency should be higher than four times per year.
- As a byproduct, we were able to estimate the EC mineralization speed.

Questions?

2. EAWAG (2011). Untersuchung der Flusswasserinfiltration mittels Zeitreihenanalyse der NAQUA Daten Oberriet, Kappelen und Brugg, interner Abschlussbericht BAFU.